Contact Me By Email

Monday, May 07, 2018

How Oman’s Rocks Could Help Save the Planet - The New York Times


"IBRA, Oman — In the arid vastness of this corner of the Arabian Peninsula, out where goats and the occasional camel roam, rocks form the backdrop practically every way you look.
But the stark outcrops and craggy ridges are more than just scenery. Some of these rocks are hard at work, naturally reacting with carbon dioxide from the atmosphere and turning it into stone.
Veins of white carbonate minerals run through slabs of dark rock like fat marbling a steak. Carbonate surrounds pebbles and cobbles, turning ordinary gravel into natural mosaics.
Carbonate veins form when water containing dissolved carbon dioxide flows through these rocks.
Even pooled spring water that has bubbled up through the rocks reacts with CO2 to produce an ice-like crust of carbonate that, if broken, re-forms within days.
When the water comes back into contact with air, a thin layer of carbonate hardens across its surface.
Scientists say that if this natural process, called carbon mineralization, could be harnessed, accelerated and applied inexpensively on a huge scale — admittedly some very big “ifs” — it could help fight climate change. Rocks could remove some of the billions of tons of heat-trapping carbon dioxide that humans have pumped into the air since the beginning of the Industrial Age.
And by turning that CO2 into stone, the rocks in Oman — or in a number of other places around the world that have similar geological formations — would ensure that the gas stayed out of the atmosphere forever.
“Solid carbonate minerals aren’t going anyplace,” said Peter B. Kelemen, a geologist at Columbia University’s Lamont-Doherty Earth Observatory who has been studying the rocks here for more than two decades.

How Oman’s Rocks Could Help Save the Planet - The New York Times

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.